Exercice 01

10 1. Selon la théorie de Brønsted :

- un acide est une espèce chimique capable de céder un ion hydrogène H+;
- une base est une espèce chimique capable de capter un ion hydrogène H+.
- 2. Tableau de couples acide-base conjugués :

Acide	H ₃ PO ₄	H ₂ O	СІОН	H ₂ S	HS ⁻	NH ₄ ⁺
Base	H ₂ PO ₄	HO-	ClO-	HS-	S ²⁻	NH ₃

Exercice 02

Exploiter l'équation d'une réaction acide-base

- 1. L'éthylamine est une base car elle capte un ion hydrogène pour donner l'acide conjugué.
- **2.** $C_{2}H_{2}NH_{3}^{+}$ (aq) / $C_{2}H_{2}NH_{3}$ (aq) et $H_{3}O^{+}$ (aq) / $H_{2}O$ (ℓ)
- 3. $C_{2}H_{2}NH_{3}^{+}(aq) + H_{2}O(\ell) \rightleftharpoons C_{2}H_{2}NH_{3}(aq) + H_{3}O^{+}(aq)$

Exercice 03

Déterminer une concentration en ions oxonium

1. Pour un pH = 5, la concentration des ions oxonium est $[H_2O^+] = 1.0 \times 10^{-5} \text{ mol} \cdot L^{-1}$.

L'eau sera acide si $[H_3O^+] < 1.0 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1}$.

2. pH =
$$-\log\left(\frac{\left[H_3O^{+}\right]}{c^{\circ}}\right)$$
 soit pH = $-\log\left(\frac{1,6 \cdot 10^{-6}}{1}\right)$,

donc pH = 5,8 > 5,0, donc cette eau de pluie n'est pas considérée comme acide alors qu'elle l'est pourtant!

Exercice 04

- 43 1. a. L'acide éthanoïque appartient au couple CH₃COOH/CH₃COO⁻.
- b. Le volume de vinaigre est $V_{\text{vin}} = \frac{m_{\text{vin}}}{\rho_{\text{vin}}} = 100 \text{ mL}.$
- c. La concentration en acide éthanoïque est :

$$c = \frac{\frac{m}{M_{\text{CH}_3\text{COOH}}}}{V_{\text{vin}}} = 1,5 \text{ mol} \cdot \text{L}^{-1}$$

- 2. a. $CH_3COOH_{(aq)} + NH_{3(aq)} \rightarrow CH_3COO^{-}_{(aq)} + NH_{4}^{+}_{(aq)}$
- b. On introduit une quantité de matière d'acide éthanoïque $n = cV = 1,5 \times 10^{-2}$ mol.
- Or, ici, les nombres stœchiométriques sont égaux si bien que le réactif limitant est celui qui est introduit en plus petite quantité donc il s'agit de l'acide éthanoïque (n < n').

Exercice 05

9 1. pH =
$$-\log\left(\frac{\left[H_3O^+\right]}{c^\circ}\right)$$

= $-\log\left(\frac{1,5 \times 10^{-3}}{1}\right) = 2,8$
2. $\left[H_3O^+\right] = \frac{1,5 \times 10^{-3}}{100} = 1,5 \times 10^{-5}$
pH = $-\log\left(\frac{\left[H_3O^+\right]}{c^\circ}\right)$
= $-\log\left(\frac{1,5 \times 10^{-5}}{1}\right) = 4,8$

3. La solution la plus acide est la moins diluée.

Exercice 06

12 1.6,3×10⁻⁵ mol·L⁻¹ < [H₃O⁺] < 3,2×10⁻³ mol·L⁻¹ On réalise le calcul en appliquant la relation :

$$pH = -\log\left(\frac{\left[H_3O^+\right]}{c^{\circ}}\right).$$

On sait que $c^{\circ} = 1 \text{ mol} \cdot L^{-1}$, donc pH = $-\log ([H_3O^+])$.

$$pH_1 = -\log (6.3 \times 10^{-5}) \text{ soit } pH_1 = 4.2.$$

 $pH_2 = -\log (3.2 \times 10^{-3}) \text{ soit } pH_2 = 2.5.$

3. Ces boissons sont acides car leur pH est inférieur

13 1.
$$[H_3O^+] = \frac{n}{V} = \frac{2.0 \times 10^{-4}}{200 \times 10^{-3}}$$

= 1.0 × 10⁻³ mol·L⁻¹

2. pH =
$$-\log\left(\frac{H_3O^+}{c^0}\right) = -\log\left(\frac{1,0\times10^{-3}}{1}\right) = 3$$

Exercice 08

10 II en voit de toutes les couleurs

1. L'équation de la réaction est :

$$HNO_{3}(\ell) + H_{2}O(\ell) \rightarrow NO_{3}^{-}(aq) + H_{3}O^{+}(aq)$$

- 2. La solution S est verte. Cette couleur résulte d'une superposition du bleu et du jaune. Le pH est donc compris entre 3,0 et 4,6.
- Pour un pH = 3,0, $[H_3O^+] = c^{\circ} \times 10^{-pH} = 1 \times 1,0 \times 10^{-3}$ donc $[H_2O^+] = 1.0 \times 10^{-3} \text{ mol} \cdot L^{-1}$.
- Pour un pH = 4,6, [H₃O⁺] = $c^{\circ} \times 10^{-pH} = 1 \times 10^{-4,6}$ donc $[H_3O^+] = 2.5 \times 10^{-5} \text{ mol} \cdot L^{-1}$.
- Donc l'encadrement de la concentration en ions oxonium de la solution S est:
- $2.5 \times 10^{-5} \text{ mol} \cdot L^{-1} < [H_{2}O^{+}] < 1.0 \times 10^{-3} \text{ mol} \cdot L^{-1}$.
- 3. La solution S deviendra jaune si le pH baisse. Il faut donc ajouter de l'acide à cette solution.
- **4. a.** $H_2O^+(aq) + HO^-(aq) \rightarrow 2 H_2O(\ell)$
- **b.** Les ions sodium Na⁺ (aq) n'est pas un acide ou une base selon Brønsted. Ce sont donc des ions spectateurs.
- c. L'ion hydroxyde est une base. L'ajout d'ion hydroxyde permettra d'augmenter le pH et donc de colorer la solution en bleu.

Exercice 09

16 Résolution de problème

Contrôler la qualité de l'eau d'un aquarium

- 1^{re} étape : Bien comprendre la question posée
- 1. Quel est le rôle du carbonate de calcium?
- 2. Comment se comporte le carbonate de calcium dans l'eau?
- 3. Comment réagissent les ions hydrogénocarbonate avec les ions oxonium?

2^e étape : Lire et comprendre les documents

- 1. Le pH de l'eau d'un aquarium doit être compris entre 5,5 et 8,5.
- 2. Le volume de l'aquarium est de 120 L.
- 3. L'eau de l'aquarium a un pH de 4,5.
- 4. La dissolution du carbonate de calcium est totale et produit des ions calcium et des ions carbonate.
- 5. Les ions carbonate réagissent avec les ions oxonium selon une transformation totale.

3° étape : Dégager la problématique

Déterminer la masse de carbonate de calcium à introduire afin d'ajuster le pH de l'eau de l'aquarium à une valeur de 5,5.

4º étape : Construire la réponse

- Calculer la quantité d'ions oxonium présents dans l'eau de l'aguarium.
- Calculer la quantité d'ions oxonium présents dans une eau d'aquarium de pH égal à 5,5.
- En déduire la quantité d'ions oxonium devant réagir pour augmenter le pH jusqu'à la valeur souhaitée.
- Déterminer la relation stœchiométrique liant les quantités d'ions oxonium et d'ions carbonate à partir de l'équation donnée.
- En déduire la quantité d'ions carbonate nécessaire.
- Déterminer la relation stœchiométrique liant les quantités d'ions carbonate et de carbonate de calcium à partir de l'équation donnée.
- En déduire la quantité puis la masse de carbonate de calcium nécessaires.

5° étape : Rédiger la réponse en trois paragraphes

• Présenter le contexte et introduire la problématique. Pour connaître la quantité de carbonate de calcium à introduire,

il est nécessaire de déterminer la quantité d'ions oxonium devant régir pour atteindre le pH de 5,5.

- Mettre en forme la réponse.
- Calculer la quantité d'ions oxonium présents dans l'eau de l'aquarium de pH égal à 4,5.

Figure 1 a quartum de pn egal a 4,3.
$$[H_3O^+]_{4,5} = c^\circ \times 10^{-pH} \text{ soit } [H_3O^+]_{4,5} = 1 \times 10^{-4,5}, \\ \text{donc } [H_3O^+]_{4,5} = 3,2 \times 10^{-5} \text{ mol} \cdot L^{-1}, \\ \text{ce qui représente une quantité de matière de } n(H_3O^+)_{4,5} = [H_3O^+]_{4,5} \times V, \text{ soit } : \\ n(H_3O^+)_{4,5} = 3,2 \times 10^{-5} \times 120 = 3,8 \times 10^{-3} \text{ mol}.$$

• Calculer la quantité d'ions oxonium présents dans une eau d'aquarium de pH égal à 5,5.

d'aquarium de pH égal à 5,5.
$$[H_3O^+]_{5,5} = c^\circ \times 10^{-pH},$$
 soit $[H_3O^+]_{5,5} = 1 \times 1,0 \times 10^{-5,5},$ donc $[H_3O^+]_{5,5} = 3,2 \times 10^{-6}$ mol·L⁻¹, ce qui représente une quantité de matière de $n(H_3O^+)_{5,5} = [H_3O^+]_{5,5} \times V$, soit : $n(H_3O^+)_{5,5} = 3,2 \times 10^{-6} \times 120 = 3,8 \times 10^{-4}$ mol.

• En déduire la quantité d'ions oxonium devant réagir pour augmenter le pH.

La quantité de matière d'ions oxonium devant réagir :
$$n(H_3O^+)_r = n(H_3O^+)_{4,5} - n(H_3O^+)_{5,5}$$
 soit $n(H_3O^+)_r = 3.8 \times 10^{-3} - 3.8 \times 10^{-4} = 3.4 \times 10^{-3}$ mol.

• Déterminer la relation stœchiométrique liant les quantités d'ions oxonium et d'ions carbonate à partir de l'équation donnée. D'après la stœchiométrie de la réaction :

$$\frac{n\left(\mathsf{H}_3\mathsf{O}^+\right)_{\mathsf{r}}}{2} = \frac{n\left(\mathsf{CO}_3^{2-}\right)}{1}$$

• En déduire la quantité d'ions carbonate nécessaire.

$$n(CO_3^{2-}) = \frac{n(H_3O^+)_r}{2}$$
 donc $n(CO_3^{2-}) = \frac{3.4 \times 10^{-3}}{2}$, soit $n(CO_2^{2-}) = 1.7 \times 10^{-3}$ mol.

• Déterminer la relation stœchiométrique liant les quantités d'ions carbonate et de carbonate de calcium à partir de l'équation donnée.

$$\frac{n(CO_3^{2-})}{1} = \frac{n(CaCO_3)}{1}$$

• En déduire la quantité puis la masse de carbonate de calcium nécessaire.

La quantité de carbonate de calcium nécessaire est donc $n(CaCO_2) = n(CO_2^{2-}) = 1.7 \times 10^{-3} \text{ mol.}$ $Or m(CaCO_3) = n(CaCO_3) \times M(CaCO_3),$ donc $m(CaCO_3) = 1.7 \times 10^{-3} \times 100.1 = 0.17 g.$

• Conclure et introduire, quand c'est possible, une part d'esprit

0,17 g de bâtons de craie sont nécessaires pour corriger le pH ce qui semble une valeur acceptable.

Exercice 10

20 Préparation d'une solution d'acide chlorhydrique

- 1. L'eau est une espèce amphotère car elle peut se comporter tantôt comme une base, tantôt comme un acide.
- **2.** $HC\ell(g) + H_2O(\ell) \rightarrow C\ell^-(aq) + H_3O^+(aq)$
- 3. D'après l'équation de la réaction :

$$n(HC\ell_{apport\acute{e}}) = n(H_3O^+).$$

Or
$$n(HC\ell_{apport\acute{e}e}) = \frac{V_1}{V_m} = \frac{5.0}{24.0} = 0.21 \text{ mol }.$$

On détermine la concentration en ions oxonium :

$$[H_3O^+] = \frac{n(H_3O^+)}{V_2} = \frac{0.21}{1.0} = 0.21 \text{ mol} \cdot L^{-1}.$$

4. Après la dilution par 10, la nouvelle concentration en ions

$$[H_3O^+] = \frac{0.21}{10} = 0.021 \text{ mol} \cdot L^{-1}$$
 soit pH = $-\log\left(\frac{0.021}{1}\right) \text{ donc pH} = 1.7.$

5. • La quantité d'ions oxonium présents dans les 10,0 mL est : $n(H_3O^+)_{\text{inital}}^{\cdot} = [H_3O^+]_{\text{initial}} \times V_S$

soit $n(H_3O^+) = 0.21 \times 10 \times 10^{-3}$ donc $n(H_3O^+) = 2.1 \times 10^{-3}$ mol.

• L'équation de la réaction s'écrit :

$$H_3O^+(aq) + HO^-(aq) \rightarrow 2 H_2O(\ell)$$

La solution sera neutre si pH = 7, soit $[H_3O^+] = 1.0 \times 10^{-7} \text{ mol} \cdot L^{-1}$, soit $n(H_3O^+)_{final} = [H_3O^+]_{final} \times V_s$

 $n(H_3O^+)_{\text{final}} = 1,0 \times 10^{-7} \times 10 \times 10^{-3} = 1,0 \times 10^{-9} \text{ mol.}$ • La quantité d'ions hydroxyde à verser est donc :

 $n(HO^-) = n(H_3O^+)_{inital} - n(H_3O^+)_{final}$

Soit $n(HO^-) = 2.1 \times 10^{-3} - 1.0 \times 10^{-9}$

donc $n(HO^{-}) = 2.1 \times 10^{-3}$ mol.

Le volume à verser est :

$$V = \frac{n(HO^-)}{[HO^-]} = \frac{2,1 \times 10^{-3}}{0,10} = 21 \text{ mL} .$$

Exercice 11

15 Détartrer une machine à laver

1. La formule semi-développée est :

- **2.** $C_3H_6O_3(aq) + H_2O(\ell) \rightleftharpoons C_3H_5O_3(aq) + H_3O^+(aq)$
- 3. La quantité de matière initiale d'acide lactique est :

$$n(C_3H_6O_3) = \frac{m}{M} \operatorname{donc} n(C_3H_6O_3) = \frac{54,1}{90,0}$$
;
soit $n(C_3H_6O_3) = 6,0 \times 10^{-1}$ mol.

3 6 3/									
Équation de la réaction		$C_{3}H_{6}O_{3}(aq) + H_{2}O(\ell) \rightarrow C_{3}H_{5}O_{3}^{-}(aq) + H_{3}O^{+}(aq)$							
État du	Avance- ment (mol)	Quantités de matière (mol)							
système		n(C ₃ H ₆ O ₃)	n(H ₂ O)	$n(C_3H_5O_3^-)$	n(H ₃ O+)				
État initial	x = 0	6,0 × 10 ⁻¹	solvant	0	0				
État intermé- diaire	x	$6.0 \times 10^{-1} - x$	solvant	х	х				
État final	$x = x_{f}$	$6.0 \times 10^{-1} - x_{\rm f}$	solvant	X_{f}	X_{f}				

4. Si la réaction est totale, il ne reste plus d'acide lactique dans la solution en fin de réaction, donc :

 $x_f = x_{\text{max}} \text{ et } 6.0 \times 10^{-1} - x_{\text{max}} = 0, \text{ soit } x_{\text{max}} = 6.0 \times 10^{-1} \text{ mol.}$

5. Par conséquent, si elle est totale, $[H_3O^+] = x_{max} = 6.0 \times 10^{-1}$ mol. Le pH de la solution obtenu étant de 1,9, sa concentration en ions oxonium est donc de :

$$\begin{split} [H_3O^+] &= 10^{-pH} = 10^{-1,9} = 1,2 \times 10^{-2} \text{ mol} \cdot L^{-1}. \\ 1,2 \times 10^{-2} \text{ mol} \cdot L^{-1} &< 6,0 \times 10^{-1} \text{ mol} \cdot L^{-1}. \end{split}$$

La concentration réelle en ions oxonium est plus faible que celle attendue si la transformation était totale. La transformation n'est donc pas totale.